skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grooms, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 15, 2026
  2. Free, publicly-accessible full text available February 12, 2026
  3. The Common Era history of effective moisture in the Central Andes is poorly understood, as most Andean proxy records reflect large-scale atmospheric circulation over the South American lowlands rather than localized precipitation vs. evaporation. Here we present 1800-year leaf wax hydrogen and carbon isotope sedimentary records from Lake Chacacocha (13.96°S, 71.08°W, 4,860 m asl.) in the Central Andes. Leaf wax δ2H from different chain lengths offers information about large-scale atmospheric conditions and local-scale effective moisture. Our leaf wax δ2H data record a gradual intensification of the South American summer monsoon (SASM) beginning around ~1250 CE, prior to the external forcings of the Little Ice Age (LIA). Despite peak SASM intensification, our leaf wax δ13C data reveal a locally arid interval between ca. 1600 and 1800 CE. The arid interval was most likely driven by enhanced evaporation and reduced local precipitation, as indicated by the hydrogen isotope fractionation between mid- and long-chain n-alkanes as well as by climate model simulations. Our results help to reconcile conflicting interpretations of the SASM, glacial, and lake-level histories in the Central Andes during the Common Era. 
    more » « less
    Free, publicly-accessible full text available December 12, 2025